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Autonomy at NASA

Ames Research Center

Autonomous spacecraft = on-board intelligence (AI)

* Goal: Unattended operation in an
unpredictable environment

* Approach: model-based reasoning

* Pros: smaller mission control crews,
no communication delays/blackouts

 Cons: Verification and Validation ???
Much more complex, huge state space

e Better verification is critical for adoption commands
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Model-Based Diagnosis

* Focus on Livingstone system from NASA Ames.

Ames Research Center

* Uses a discrete, qualitative model to reason about faults

Controller
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Courtesy Autonomous Systems Group, NASA Ames
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Faults

Errors

Ex: valve 1s stuck

Ex: fault not detected

in Plant/Simulator

in Diagnosis/Design

Spontaneous physical event

Human design flaw

To de detected by Diagnosis

To be detected by Verification
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Similar to VeriSoftlGodefroid 97]

Uses checkpointing implemented in Livingstone
In Java, accesses Livingstone (C++) through JNI

TACAS '04

Ames Research Center

Search
Engine




v

event :=
Driver.getNext()

1

Simulator.apply(event)

event.isCommand()

true false

¥

Diagnosis.notify(event)

obs :=
Simulator.getObservations()

Diagnosis.update(obs)
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Diagnosis candidates are "correct” w.r.t. Simulator modes

Mode Comparison (MC): first candidate is correct

Candidate Matching (CM): some candidate is correct

Ames Research Center

Candidate Subsumption (CS): some candidate's faults are included

CS may miss errors but works best in practice
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Defines the tree of executions to be explored

Described as a non-deterministic program
using a simple scripting language

stmt = " event" ; 1 D:
| { stmt* }
| mix stmt (and stmt)* I IR
| choose stmt (or stmt)* il - :

Implemented as a hierarchy of automata objects
matching the scenario script structure
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Framework allows to use any (suitably instrumented)
simulation software
Trade-off: higher-fidelity simulators may restrict instrumentation

Current implementation uses second Livingstone engine as
simulator

|
Same or different model i L |
Different mode of operation: I .
Diagnosis : cmds, obs —> modes .
Simulator : cmds, modes —> obs 1 |:

Simulator comes "for free"
Rationale: verify diagnosis assuming the model is correct

Also considered: CONFIG (hybrid, NASA JSC)
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The whole testbed is seen as a transition system

API to enumerate transitions, backtrack, get/set state
Shared with Java PathFinderlVisser etal. 00]

Principle inspired from OPEN/CAESAR [Garavel 98]
Search engine fixes exploration strategy

Depth-First: simplest, most efficient ik |

Heuristic: valuation function on states s
(e.g. number of diagnosis candidates) r |

Breadth-First t |

Others are possible (random, pattern-based,
interactive)
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Propulsion feed system of space vehicle
Livingstone model: 2300 lines, 823 vars, =103 states (SMV)

Two scenarios:

Random Scenario (10216 states):
sequence of commands Il choice of faults

PITEX Scenario (89 states):
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scenario | strategy | search lfc‘ondition errors non—trivm states | /States/min
baseline DFS all CM 27 4 89 44
baseline DFS all CS 0 0 89 67
random DFS all CM 9621 137 | 10216 51
random DFS all N CS 5 M 10216 5

scenario search | condition | max. depth state“ states/min
random one CS 16 | 8648 49
random one CS 154 38
random one CS 154 38

DFS=depth-first, BFS=breadth-first, CC=candidate-count
all=all errors, one=first error, min=shortest trace
CM=candidate matching, CS=candidate subsumption

trivial error=no fault reported
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Extend search options
More heuristics (including application-specific)
New search strategies (randomized, coverage-based)
Improve usability
GUI, post-process and display results

Generalize to reactive control

From fault detection to fault recovery
In progress: adapt LPF to Titan (MIT)

Other approach: apply SMV (and BMC) to Livingstone
models, verify diagnosabilitylCimatti etal. 03]

using Livingstone-to-SMV translator!Pecheur etal. 00]
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Extra Slides
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Verify what?

Model Correctness: the model 1s OK
1.e. the model 1s a valid abstraction of the plant

Engine Correctness: the software 1s OK
1.e. all that can be diagnosed is correctly
diagnosed

Diagnosability: the design is OK

i.e. all that needs to be diagnosed can be
diagnosed

In principle, 1+2+3 => diagnosis will be correct
Here we look at 3 only! 19
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mix {
"command test.sv02.valveCmdIn=close";
"command test.sv02.valveCmdIn=open";
} and {
choose
"fault test.forwardLO2.mode=unknownFault"; or
"fault test.mprelOlp.mode=faulty"; or

choose { "fault test.mpre202p.mode=biased"; }
or { "fault test.mpre2l2p.mode=biased"; }
or {
"command test.sv3l.valveCmdIn=open";
choose {
"fault test.sv3l.sv.mode=stuckOpen";
"command test.sv3l.valveCmdIn=close";
} or {
"command test.sv3l.valveCmdIn=close";

Py}
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